[1]傅晓颖,邓晓敏,陈倩云,等.飞燕草素对光诱导小鼠视网膜感光细胞661W铁过载的调控作用[J].眼科新进展,2021,41(7):615-620.[doi:10.13389/j.cnki.rao.2021.0127]
 FU Xiaoying,DENG Xiaomin,CHEN Qianyun,et al.Regulatory effect of delphinidin on iron overload in light-induced retinal photoreceptor cells 661W of mice[J].Recent Advances in Ophthalmology,2021,41(7):615-620.[doi:10.13389/j.cnki.rao.2021.0127]
点击复制

飞燕草素对光诱导小鼠视网膜感光细胞661W铁过载的调控作用/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
41卷
期数:
2021年7期
页码:
615-620
栏目:
实验研究
出版日期:
2021-07-05

文章信息/Info

Title:
Regulatory effect of delphinidin on iron overload in light-induced retinal photoreceptor cells 661W of mice
作者:
傅晓颖邓晓敏陈倩云彭佳媛杜旌畅朱彦锋余小平
610500 四川省成都市,成都医学院(傅晓颖,邓晓敏,陈倩云,杜旌畅,朱彦锋,余小平);614000 四川省乐山市,乐山市人民医院病理科(彭佳媛)
Author(s):
FU Xiaoying1DENG Xiaomin1CHEN Qianyun1PENG Jiayuan2DU Jingchang1ZHU Yanfeng1YU Xiaoping1
1.Chengdu Medical College,Chengdu 610500,Sichuan Province,China
2.Department of Pathology,Leshan People’s Hospital,Leshan 614000,Sichuan Province,China
关键词:
飞燕草素光化学损伤氧化应激铁过载
Keywords:
Delphinidin photochemical damage oxidative stress iron overload
分类号:
R774
DOI:
10.13389/j.cnki.rao.2021.0127
文献标志码:
A
摘要:
目的 探究飞燕草素(Delphinidin)对光诱导661W细胞铁过载的调控作用及机制。方法 将小鼠视网膜感光细胞661W分为Control组、Light组、Light+铁螯合剂(DFP)组、Light + Delphinidin组、Control + Delphinidin组。以(2000±200)lx白色荧光持续照射661W细胞48 h建立光损伤模型,采用CCK-8法筛选Delphinidin和DFP的最佳作用浓度。利用CCK-8法测定各组细胞活力,Hoechst-PI荧光观察各组细胞的细胞膜受损程度,流式细胞仪检测各组细胞铁含量及脂质过氧化物水平,Western blot检测各组细胞铁代谢相关蛋白表达水平。结果 CCK-8法检测结果显示,5 μmol·L-1 Delphinidin和20 μmol·L-1 DFP为最佳作用浓度。与Control组相比,Light组661W细胞损伤严重,细胞活力下降为(56.69±1.48)%,铁含量增加,脂质过氧化物水平升高,差异均有统计学意义(均为P<0.05);与Light组相比,Light + DFP组和Light + Delphinidin组661W细胞损伤减轻,细胞活力分别升高为(62.85±0.46)%和(63.41±0.68)%,铁含量减少,脂质过氧化物水平降低,差异均有统计学意义(均为P<0.05)。Western blot检测结果显示,与Control组相比,Light组细胞二价金属离子转运体1(DMT1)、转铁蛋白受体1(TfR1)、铁蛋白轻链(FTL)、铁蛋白重链1(FTH1)表达水平均升高,膜铁转运蛋白(Fpn)表达水平降低,差异均有统计学意义(均为P<0.05);与Light组相比,Light + DFP组和Light + Delphinidin组细胞TfR1、Fpn蛋白表达水平均升高,DMT1、FTL和FTH1蛋白表达水平均降低,差异均有统计学意义(均为P<0.05)。结论 Delphinidin可通过调节铁代谢相关蛋白表达,缓解光诱导的661W细胞铁过载,进而抑制脂质过氧化反应,减少视网膜氧化损伤。
Abstract:
Objective To explore the regulatory effect and mechanism of Delphinidin on light-induced iron overload in 661W cells.Methods Mouse retinal photoreceptor cells 661W were divided into Control group, Light group, Light + iron chelator (DFP) group, Light + Delphinidin group, Control + Delphinidin group. The light damage model was established with (2000±200) lx white fluorescence for continuous irradiation of 661W cells at 48 h, and the optimal concentrations of Delphinidin and DFP were screened by CCK-8 methods. The cell viability of each group was measured by the CCK-8 methods, the cell membrane damage degree of each group was observed by Hoechst-PI fluorescence, the iron content and lipid peroxide level of each group were detected by flow cytometry and the expression levels of iron metabolism-related proteins in each group were analyzed by Western blot.Results The results of CCK-8 methods showed that 5 μmol·L-1 Delphinidin and 20 μmol·L-1 DFP were the optimal drug concentrations. Compared with the Control group, the 661W cells in the Light group were seriously damaged, cell viability decreased to (56.69±1.48) %, iron content increased, lipid peroxide level increased, and the differences were statistically significant (all P<0.05); compared with the Light group, cell damage in the Light + DFP group and the Light + Delphinidin group was alleviated, cell viability increased to (62.85±0.46) % and (63.41±0.68) %, respectively, iron content decreased, lipid peroxides level decreased, and the differences were statistically significant (all P<0.05). Western blot results showed that compared with the Control group, the expression levels of divalent metal ion transporter 1 (DMT1), transferrin receptor 1 (TfR1), ferritin light chain (FTL) and ferritin heavy chain1 (FTH1) were increased in the Light group, while the expression level of ferroportin (Fpn) protein decreased, and the differences were all statistically significant (all P<0.05); compared with the Light group, the protein expression levels of TfR1 and Fpn were increased in the Light + DFP group and the Light + Delphinidin group, while the protein expression levels of DMT1, FTL and FTH1 were decreased, and the differences were statistically significant (all P<0.05).Conclusion Delphinidin can alleviate light-induced iron overload in 661W cells by regulating the expression of iron metabolism-related proteins, thereby inhibiting lipid peroxidation and reducing retinal oxidative damage.

参考文献/References:

[1] VAN NORREN D,VOS J J.Light damage to the retina:an historical approach[J].Eye(Lond),2016,30(2):169-172.
[2] BOGDAN A R,MIYAZAWA M,HASHIMOTO K,TSUJI Y.Regulators of iron homeostasis:new players in metabolism,cell death,and disease[J].Trends Biochem Sci,2016,41(3):274-286.
[3] PENNINGTON K L,DEANGELIS M M.Epidemiology of age-related macular degeneration (AMD):associations with cardiovascular disease phenotypes and lipid factors[J].Eye Vis (Lond),2016,3:34-53.
[4] HAHN P,MILAM A H,DUNAIEF J L.Maculas affected by age-related macular degeneration contain increased chelatable iron in the retinal pigment epithelium and Bruch’s membrane[J].Arch Ophthalmol,2003,121(8):1099-1105.
[5] SAKAMOTO K,SUZUKI T,TAKAHASHI K,KOGUCHI T,HIRAYAMA T,MORI A,et al.Iron-chelating agents attenuate NMDA-induced neuronal injury via reduction of oxidative stress in the rat retina[J].Exp Eye Res,2018,171:30-36.
[6] PICARD E,DARUICH A,YOUALE J,COURTOIS Y,BEHAR-COHEN F.From rust to quantum biology:the role of iron in retina physiopathology[J].Cells,2020,9(3):705-733.
[7] MATTIOLI R,FRANCIOSO A,MOSCA L,SILVA P.Anthocyanins:a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases[J].Molecules,2020,25(17):3809-3850.
[8] GRIMES K L,STUART C M,MCCARTHY J J,KAUR B,CANTU E J,FORESTER S C.Enhancing the cancer cell growth inhibitory effects of table grape anthocyanins[J].J Food Sci,2018,83(9):2369-2374.
[9] 邓晓敏,傅晓颖,彭佳媛,吴蔼林,李沁轩,杜旌畅,等.飞燕草素对光化学损伤661W细胞的保护作用及其机制[J].眼科新进展,2021,41(2):120-124.
DENG X M,FU X Y,PENG J Y,WU A L,LI Q X,DU J C,et al.Protective effect of delphinidin on photochemical damaged 661W cells and its mechanisms[J].Rec Adv Ophthalmol,2021,41(2):120-124.
[10] 彭佳媛 杜旌畅,钟茜,刘婷婷,杨利琼,吴蔼林,等.飞燕草素对光诱导的视网膜氧化损伤的保护作用[J].国际眼科杂志,2019,19(10):1657-1662.
PENG J Y,DU J C,ZHONG Q,LIU T T,YANG L Q,WU A L,et al.Protect effect of delphinidin on light induced oxidative damage of retina[J].Int Eye Sci,2019,19(10):1657-1662.
[11] YOUSSEF P N,SHEIBANI N,ALBERT D M.Retinal light toxicity[J].Eye(Lond),2011,25(1):1-14.
[12] RAHMAN M M,ICHIYANAGI T,KOMIYAMA T,HATANO Y,KONISHI T.Superoxide radical- and peroxynitrite-scavenging activity of anthocyanins; structure-activity relationship and their synergism[J].Free Radic Res,2006,40(9):993-1002.
[13] TAN E,DING X Q,SAADI A,AGARWAL N,NAASH M,AI-UBAIDI M R.Expression of cone-photoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice[J].Invest Ophthalmol Vis Sci,2004,45(3):764-768.
[14] DARUICH A,LE ROUZIC Q,JONET L,NAUD M C,KOWALCZUK L,POURNARAS J A,et al.Iron is neurotoxic in retinal detachment and transferrin confers neuroprotection[J].Sci Adv,2019,5(1):eaau9940-eaau9953.
[15] WONG R W,RICHA D C,HAHN P,GREEN W R,DUNAIEF J L.Iron toxicity as a potential factor in AMD[J].Retina,2007,27(8):997-1003.
[16] IMAMURA T,HIRAYAMA T,TSURUMA K,SHIMAZAWA M,NAGASAWA H,HARA H.Hydroxyl radicals cause fluctuation in intracellular ferrous ion levels upon light exposure during photoreceptor cell death[J].Exp Eye Res,2014,129:24-30.
[17] DIXON S J,LEMBERG K M,LAMPRECHT M R,SKOUTA R,ZAITSEV E M,GLEASON C E,et al.Ferroptosis:an iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5):1060-1072.
[18] KAJARABILLE N,LATUNDE-DADA G O.Programmed cell-death by ferroptosis:antioxidants as mitigators[J].Int J Mol Sci,2019,20(19):4968-4979.
[19] DAVINELLI S,BERTOGLIO J C,ZARRELLI A,PINA R,SCAPAGNINI G.A randomized clinical trial evaluating the efficacy of an anthocyanin-Maqui berry extract (delphinol?) on oxidative stress biomarkers[J].J Am Coll Nutr,2015,34(Suppl 1):28-33.
[20] MAZZA G,KAY C D,COTTRELL T,HOLUB B J.Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects[J].J Agric Food Chem,2002,50(26):7731-7737.
[21] SILVN J M,REGUERO M,DE PASCUAL-TERESA S.A protective effect of anthocyanins and xanthophylls on UVB-induced damage in retinal pigment epithelial cells[J].Food Funct,2016,7(2):1067-1076.
[22] KNUTSON M D.Non-transferrin-bound iron transporters[J].Free Radic Biol Med,2019,133:101-111.
[23] WIELAND E,SHIPKOVA M.Lymphocyte surface molecules as immune activation biomarkers[J].Clin Biochem,2016,49(4/5):347-354.
[24]  C ˇ OLAK E,ORI C ' L,RADOSAVLJEVI C ' A,IGNJATOVI C ' S.The association of serum iron-binding proteins and the antioxidant parameter levels in age-related macular degeneration[J].Curr Eye Res,2018,43(5):659-665.
[25] HADZIAHMETOVIC M,KUMAR U,SONG Y,GRIECO S,SONG D,LI Y.Microarray analysis of murine retinal light damage reveals changes in iron regulatory,complement,and antioxidant genes in the neurosensory retina and isolated RPE[J].Invest Ophthalmol Vis Sci,2012,53(9):5231-5241.
[26] THEURL M,SONG D,CLARK E,STERLING J,GRIECO S,ALTAMURA S,et al.Mice with hepcidin-resistant ferroportin accumulate iron in the retina[J].FASEB J,2016,30(2):813-823.

相似文献/References:

[1]邓晓敏,傅晓颖,彭佳媛,等.飞燕草素对光化学损伤661W细胞的保护作用及其机制[J].眼科新进展,2021,41(2):120.[doi:10.13389/j.cnki.rao.2021.0025]
 DENG Xiaomin,FU Xiaoying,PENG Jiayuan,et al.Protective effect of delphinidin on photochemical damaged 661W cells and its mechanisms[J].Recent Advances in Ophthalmology,2021,41(7):120.[doi:10.13389/j.cnki.rao.2021.0025]

备注/Memo

备注/Memo:
国家自然科学基金资助项目(编号:81773432,82073539)
更新日期/Last Update: 2021-07-05