[1]祝渊,陈松,王一鹏,等.不同波长人工发光二极管光照对大鼠视网膜的影响[J].眼科新进展,2021,41(3):218-222.[doi:10.13389/j.cnki.rao.2021.0045]
 ZHU Yuan,CHEN Song,WANG Yipeng,et al.Effects of different wavelengths of artificial light-emitting diode on rat’s retina[J].Recent Advances in Ophthalmology,2021,41(3):218-222.[doi:10.13389/j.cnki.rao.2021.0045]
点击复制

不同波长人工发光二极管光照对大鼠视网膜的影响/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
41卷
期数:
2021年3期
页码:
218-222
栏目:
实验研究
出版日期:
2021-03-05

文章信息/Info

Title:
Effects of different wavelengths of artificial light-emitting diode on rat’s retina
作者:
祝渊陈松王一鹏杨文超陈冬冬
300020 天津市,天津医科大学眼科临床学院 天津市眼科医院 天津市眼科学与视觉科学重点实验室 天津市眼科研究所(祝渊,陈松);455000 河南省安阳市,安阳市眼科医院 安阳市眼科重点实验室(王一鹏,杨文超,陈冬冬)
Author(s):
ZHU Yuan1CHEN Song1WANG Yipeng2YANG Wenchao2CHEN Dongdong2
1.Clinical College of Ophthalmology of Tianjin Medical University,Tianjin Eye Hospital,Tianjin Key Lab of Ophthalmology and Visual Science,Tianjin Institute of Ophthalmology,Tianjin 300020,China
2.Anyang Eye Hospital,Anyang Key Laboratory of Ophthalmology,Anyang 455000,Henan Province,China
关键词:
人工发光二极管视网膜光损伤感光细胞凋亡
Keywords:
artificial light-emitting diode retinal light damage photoreceptor cell apoptosis
分类号:
R774
DOI:
10.13389/j.cnki.rao.2021.0045
文献标志码:
A
摘要:
目的 探讨红、绿、蓝、白四种不同波长人工发光二极管(LED)光照对大鼠视网膜的影响。方法 45只3周龄SD大鼠作为实验动物,分为空白对照组,以及1000 lux和2000 lux照度下的红光照射组、绿光照射组、蓝光照射组、白光照射组,每组各5只。空白对照组大鼠自然光线下饲养1个月,不同光照组采用相应波长LED进行光照,每天照射10 min,连续1个月。取各组大鼠左眼视网膜行TUNEL染色观察细胞凋亡情况,取各组大鼠右眼视网膜行Western blot检测视网膜中PARP和GFAP的蛋白相对表达量。结果 照度1000 lux时,红光照射组、绿光照射组、蓝光照射组、白光照射组大鼠视网膜TUNEL染色均未见明显的细胞核阳性染色;Western blot检测结果显示,各组大鼠视网膜中cleved-PARP及GFAP蛋白相对表达量与空白对照组相比,差异均无统计学意义(均为P>0.05)。照度为2000 lux时,除空白对照组和红光照射组外,绿光照射组、蓝光照射组、白光照射组大鼠视网膜TUNEL染色后视网膜感光细胞层均可见细胞核点状阳性着染,提示存在DNA的降解断端;Western blot检测结果显示,蓝光照射组大鼠视网膜中cleved-PARP蛋白表达量(1.414±0.192)较空白对照组(0.624±0.148)增加,差异有统计学意义(P<0.05),红光照射组(0.660±0.067)、绿光照射组(0.764±0.127)、白光照射组(0.748±0.160)大鼠视网膜cleved-PARP蛋白表达与空白对照组相比,差异均无统计学意义(均为P>0.05);各组大鼠视网膜中GFAP蛋白相对表达量比较,差异均无统计学意义(均为P>0.05)。结论 照度2000 lux、每天10 min光照1个月,蓝光照射的大鼠会出现视网膜光损伤表现。
Abstract:
Objective To investigate the effects of artificial light-emitting diodes (LED) with four different wavelengths of red, green, blue and white on the damage of rat’s retina after illumination.Methods Totally 45 3-week-old SD rats were used as experimental animals. They were divided into a blank control group, and red light irradiation group, green light irradiation group, blue light irradiation group and white light irradiation group each at 1000 lux and 2000 lux illuminance, with 5 rats in each group. The rats in the blank control group were reared under natural light for 1 month, and the different light groups were irradiated with LEDs of corresponding wavelengths for 10 minutes a day for 1 month. The retina of left eyes in each group of rats was taken for TUNEL apoptosis staining to observe the degree of apoptosis, and the retina of right eyes in each group of rats was taken to perform Western blot to detect the relative expression of PARP and GFAP in the retina.Results Under the illuminance of 1000 lux, the red light irradiation group, green light irradiation group, blue light irradiation group, and white light irradiation group have no obvious positive staining of nucleus in the TUNEL staining of rat’s retina. Western blot results showed that the relative expression of cleved-PARP and GFAP protein in the retina of each group was not statistically significant compared with the blank control group (all P>0.05). Under the illuminance of 2000 lux, except the blank control group and the red light irradiation group, the TUNEL staining of rat’s retina in the green light irradiation group, the blue light irradiation group, and the white light irradiation group showed positive staining of nuclei in the photoreceptor cell layer of the retina, indicating the presence of the degradation of DNA ends. Western blot detection results showed that compared with the blank control group (0.624±0.148), the expression of cleved-PARP protein in the retina of the blue light irradiation group (1.414±0.192) increased, and the difference was statistically significant (P<0.05), but the differences in protein expression of cleved-PARP rat retina in the red light irradiated group (0.660 ± 0.067), green light group (0.764 ± 0.127), and white light group (0.748 ± 0.160) were not statistically significant compared with the blank control group (all P>0.05). There was no statistically significant difference in the expression of GFAP protein in the retina of rats in each group (P>0.05).Conclusion Under the condition of 2000 lux and 10 minutes per day for 1 month, the expression of apoptosis protein in the retina of blue light irradiated rats increased, which indicates that there is the presence of retinal light damage performance.

参考文献/References:

[1] WANG Y P,LIANG Z Y,CHEN S,YANG W C,KONG J H.Chronic photodamage in the chicken retina using 650-nm semiconductor laser[J].Int J Ophthalmol,2019,12(6):936-942.
[2] ALGVERE P V,MARSHALL J,SEREGARD S.Age-related maculopathy and the impact of blue light hazard[J].Acta Ophthalmol Scand,2006,84(1):4-15.
[3] ALGVERE P V,KVANTA A,SEREGARD S.Drusen maculopathy:a risk factor for visual deterioration[J].Acta Ophthalmol,2016,94(5):427-433.
[4] STONE J,Van DRIEL D,VALTER K,REES S,PROVIS J.The locations of mitochondria in mammalian photoreceptors:relation to retinal vasculature[J].Brain Res,2008,1189:58-69.
[5] FENG J,CHEN Y,LU B,SUN X,ZHU H,SUN X.Autophagy activated via GRP78 to alleviate endoplasmic reticulum stress for cell survival in blue light-mediated damage of A2E-laden RPEs[J].BMC Ophthalmol,2019,19(1):249.
[6] De MONTELLANO P R O.Hydrocarbon hydroxylation by cytochrome P450 enzymes[J].Chem Rev,2010,110(2):932-948.
[7] TAO J X,ZHOU W C,ZHU X G.Mitochondria as potential targets and initiators of the blue light hazard to the retina[J].Oxid Med Cell Longev,2019,2019:6435364.
[8] MAEDA T,GOLCZAK M,MAEDA A.Retinal photodamage mediated by all-trans-retinal[J].Photochem Photobiol,2012,88(6):1309-1319.
[9] ORGANISCIAK D T,VAUGHAN D K.Retinal light damage:mechanisms and protection[J].Prog Retina Eye Res,2010,29(2):113-134.
[10] ATHANASIOU D,AGUIL M,BEVILACQUA D,NOVOSELOV S S,PARFITT D A,CHEETHAM M E.The cell stress machinery and retinal degeneration[J].FEBS Lett,2013,587(13):2008-2017.
[11] SUNDAR J C,MUNEZERO D,BRYAN-HARING C,SARAVANAN T,JACQUES A,RAMAMURTHY V.Rhodopsin signaling mediates light-induced photoreceptor cell death in rd10 mice through a transducin-independent mechanism[J].Hum Mol Genet,2020,29(3):394-406.
[12] BAKSHEEVA V E,TIULINA V V,TIKHOMIROVA N K,GANCHAROVA O S,KOMAROV S V,PHILIPPOV P P,et al.Suppression of light-induced oxidative stress in the retina by mitochondria-targeted antioxidant[J].Antioxidants,2018,8(1):3.
[13] TRACHSEL-MONCHO L,BENLLOCH-NAVARRO S,FERNNDEZ-CARBONELL ,RAMREZ-LAMELAS D T,OLIVAR T,SILVESTRE D,et al.Oxidative stress and autophagy-related changes during retinal degeneration and development[J].Cell Death Dis,2018,9(8):812.
[14] KUTSYR O,SNCHEZ-SEZ X,MARTNEZ-GIL N,De JUAN E,LAX P,MANEU V,et al.Gradual increase in environmental light intensity induces oxidative stress and inflammation and accelerates retinal neurodegeneration[J].Invest Ophthalmol Vis Sci,2020,61(10):1.
[15] BHATT L,GROEGER G,MCDERMOTT K,COTTER T G.Rod and cone photoreceptor cells produce ROS in response to stress in a live retinal explant system[J].Mol Vis,2010,16:283-293.
[16] BYRNE A M,RUIZ-LOPEZ A M,ROCHE S L,MOLONEY J N,WYSE-JACKSON A C,COTTER T G.The synthetic progestin norgestrel modulates Nrf2 signaling and acts as an antioxidant in a model of retinal degeneration[J].Redox Biol,2016,10:128-139.
[17] PALAMALAI V,DARROW R M,ORGANISCIAK D T,MIYAGI M.Light-induced changes in protein nitration in photoreceptor rod outer segments[J].Mol Vis,2006,12:1543-1551.
[18] CANT A,OLIVAR T,ROMERO F J,MIRANDA M.Nitrosative stress in retinal pathologies:review[J].Antioxidants,2019,8(11):543.
[19] CAMPOCHIARO P A,MIR T A.The mechanism of cone cell death in retinitis pigmentosa[J].Prog Retina Eye Res,2018,62:24-37.
[20] MIRANDA M,ARNAL E,AHUJA S,ALVAREZ-NLTING R,LPEZ-PEDRAJAS R,EKSTRM P,et al.Antioxidants rescue photoreceptors in rd1 mice:Relationship with thiol metabolism[J].Free Radic Biol Med,2010,48(2):216-222.
[21] DEMONTIS G C,LONGONI B,MARCHIAFAVA P L.Molecular steps involved in light-induced oxidative damage to retinal rods[J].Invest Ophthalmol Vis Sci,2002,43(7):2421-2427.
[22] YANG J H,BASINGER S F,GROSS R L,WU S M.Blue light-induced generation of reactive oxygen species in photoreceptor ellipsoids requires mitochondrial electron transport[J].Invest Ophthalmol Vis Sci,2003,44(3):1312-1319.
[23] NOAILLES A,MANEU V,CAMPELLO L,LAX P,CUENCA N.Systemic inflammation induced by lipopolysaccharide aggravates inherited retinal dystrophy[J].Cell Death Dis,2018,9(3):350.
[24] CUENCA N,FERNáNDEZ-SNCHEZ L,CAMPELLO L,MANEU V,De LA VILLA P,LAX P,et al.Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases[J].Prog Retina Eye Res,2014,43:17-75.
[25] MARC R E,JONES B W,WATT C B,VAZQUEZ-CHONA F,VAUGHAN D K,ORGANISCIAK D T.Extreme retinal remodeling triggered by light damage:implications for age related macular degeneration[J].Mol Vis,2008,14:782-806.
[26] CHEN Y,WANG N,YUAN Q,QIN J,HU G,LI Q,et al.The protective effect of fluorofenidone against cyclosporine A-induced nephrotoxicity[J].Kidney Blood Press Res,2019,44(4):656-668.
[27] SCHIEWER M J,MANDIGO A C,GORDON N,HUANG F,GAUR S,De LEEUW R,et al.PARP-1 regulates DNA repair factor availability[J].EMBO Mol Med,2018,10(12):e8816.
[28] GIL-KULIK P,DUDZI N'SKA E,RADZIKOWSKA-BCHNER E,WAWER J,JOJCZUK M,NOGALSKI A,et al.Different regulation of PARP1,PARP2,PARP3 and TRPM2 genes expression in acute myeloid leukemia cells[J].BMC Cancer,2020,20(1):435.
[29] BRENNER M.Role of GFAP in CNS injuries[J].Neurosci Lett,2014,565:7-13.
[30] N U'EZ-LVAREZ C,OSBORNE N N.Blue light exacerbates and red light counteracts negative insults to retinal ganglion cells in situ and R28 cells in vitro[J].Neurochem Int,2019,125:187-196.
[31] OSBORNE N N,N U'EZ-LVAREZ C,DEL OLMO-AGUADO S.The effect of visual blue light on mitochondrial function associated with retinal ganglions cells[J].Exp Eye Res,2014,128:8-14.
[32] LU Y Z,FERNANDO N,NATOLI R,MADIGAN M,VALTER K.670nm light treatment following retinal injury modulates Muller cell gliosis:Evidence from in vivo and in vitro stress models[J].Exp Eye Res,2018,169:1-12.
[33] LIN C I,CHIAO C C.Blue light promotes neurite outgrowth of retinal explants in postnatal ChR2 mice[J].eNeuro,2019,6(4):ENEURO.0391-18.
[34] JAADANE I,BOULENGUEZ P,CHAHORY S,CARR S,SAVOLDELLI M,JONET L,et al.Retinal damage induced by commercial light emitting diodes (LEDs)[J].Free Radic Biol Med,2015,84:373-384.

相似文献/References:

[1]韩宇逸,姚进.硫化氢对眼科疾病潜在治疗作用的研究进展[J].眼科新进展,2016,36(4):390.[doi:10.13389/j.cnki.rao.2016.0106]
 HAN Yu-Yi,YAO Jin.Progress in potential treatment of hydrogen sulfide for ophthalmic diseases[J].Recent Advances in Ophthalmology,2016,36(3):390.[doi:10.13389/j.cnki.rao.2016.0106]
[2]徐静,卞敏娟,崔金刚,等.白蒺藜对光损伤小鼠光感受器细胞的保护作用[J].眼科新进展,2017,37(2):110.[doi:10.13389/j.cnki.rao.2017.0029]
 XU Jing,BIAN Min-Juan,CUI Jin-Gang,et al.Protective effects of tribulus terrestris L on photoreceptors from developing bright light-induced degeneration[J].Recent Advances in Ophthalmology,2017,37(3):110.[doi:10.13389/j.cnki.rao.2017.0029]
[3]徐静,陈尧,李娜,等.人脐带间充质干细胞对大鼠视网膜光损伤的保护作用[J].眼科新进展,2019,39(5):411.[doi:10.13389/j.cnki.rao.2019.0094]
 XU Jing,CHEN Yao,LI Na,et al.Protective effects of human umbilical cord mesenchyme stem cells on light-induced retinal damage in rats[J].Recent Advances in Ophthalmology,2019,39(3):411.[doi:10.13389/j.cnki.rao.2019.0094]
[4]邓晓敏,彭佳媛,吴蔼林,等.自噬在视网膜光损伤中的作用研究进展[J].眼科新进展,2020,40(1):095.[doi:10.13389/j.cnki.rao.2020.0024]
 DENG Xiaomin,PENG Jiayuan,WU Ailin,et al.Advances in autophagy during retinal light damage[J].Recent Advances in Ophthalmology,2020,40(3):095.[doi:10.13389/j.cnki.rao.2020.0024]

备注/Memo

备注/Memo:
天津市教育委员会-天津市研究生创新项目(编号:2019YJSS180);河南省医学科技攻关项目(编号:LHGJ20191279)
更新日期/Last Update: 2021-03-05