[1]袁晨,张梅,谢学军.补肾活血中药方血清对离体状态下血-视网膜内屏障模型的保护作用[J].眼科新进展,2021,41(3):206-211.[doi:10.13389/j.cnki.rao.2021.0043]
 YUAN Chen,ZHANG Mei,XIE Xuejun.Protective effect of serum of Bushenhuoxue decoction on the inner blood-retinal barrier model in vitro[J].Recent Advances in Ophthalmology,2021,41(3):206-211.[doi:10.13389/j.cnki.rao.2021.0043]
点击复制

补肾活血中药方血清对离体状态下血-视网膜内屏障模型的保护作用/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
41卷
期数:
2021年3期
页码:
206-211
栏目:
实验研究
出版日期:
2021-03-05

文章信息/Info

Title:
Protective effect of serum of Bushenhuoxue decoction on the inner blood-retinal barrier model in vitro
作者:
袁晨张梅谢学军
610072 四川省成都市,成都中医药大学眼科学院(袁晨);610075 四川省成都市,成都中医药大学药学院,中药材标准化教育部重点实验室,中药资源系统研究与开发利用省部共建国家重点实验室培育基地(张梅);610072 四川省成都市,成都中医药大学附属医院眼科(谢学军)
Author(s):
YUAN Chen1ZHANG Mei2XIE Xuejun3
1.College of Ophthalmology,Chengdu University of Traditional Chinese Medicine
2.College of Pharmacy,Chengdu University of Traditional Chinese Medince;Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education;State Key Laboratory Breeding Base of Systematic Research for Development and Utilization of Chinese Medicine Resources
3.Department of Ophthalmology,Hospital of Chengdu University of Traditional Chinese Medicine
关键词:
补肾活血中药方血-视网膜内屏障糖基化终末产物缺氧
Keywords:
Bushenhuoxue decoction inner blood-retinal barrier advanced glycosylation end products hypoxia
分类号:
R774
DOI:
10.13389/j.cnki.rao.2021.0043
文献标志码:
A
摘要:
目的 探讨补肾活血中药方血清对离体状态下血-视网膜内屏障(iBRB)模型的保护作用。方法 取新生7 d SD大鼠用于取材及细胞原代培养。将大鼠视网膜微血管内皮细胞(RMEC)和视网膜Müller胶质细胞(RMGC)分离及传代培养,利用Transwell小室将RMEC与RMGC共培养以构建正常条件下的体外iBRB模型,制备补肾活血中药方血清,并分别标记为中药含药血清和空白血清。本实验分8组。选取构建成功的体外iBRB细胞共培养模型,按不同培养条件进行分组。其中正常对照组用含体积分数20%空白血清的DMEM液培养;中药干预正常组用含体积分数20%中药含药血清的DMEM液培养;低糖基化终末产物(AGEs)组用含体积分数20%空白血清的DMEM液及终浓度50 mg·L-1AGEs培养;中药干预低AGEs组用含体积分数20%中药含药血清的DMEM液及终浓度50 mg·L-1AGEs培养;高AGEs组用含体积分数20%空白血清的DMEM液及终浓度100 mg·L-1AGEs培养;中药干预高AGEs组用含体积分数20%中药含药血清的DMEM液及终浓度100 mg·L-1AGEs培养;缺氧组用含体积分数20%空白血清的DMEM液及终浓度1.0 mmol·L-1连二亚硫酸钠培养;中药干预缺氧组用含体积分数20%中药含药血清的DMEM液及终浓度1.0 mmol·L-1连二亚硫酸钠培养。利用细胞电阻仪检测各组RMEC层的跨内皮细胞电阻(TEER),采用免疫荧光双标法检测各组Occludin、ZO-1蛋白在RMEC层的表达。结果 在AGEs或缺氧条件下,低AGEs组、高AGEs组及缺氧组RMEC层TEER在细胞培养24 h、48 h和72 h后均低于正常对照组,差异均有统计学意义(均为P<0.05)。在细胞培养24 h后,中药干预正常组与正常对照组RMEC层TEER相比,差异无统计学意义(P>0.05),在细胞培养48 h后中药干预正常组RMEC层TEER高于正常对照组,差异有统计学意义(P<0.05),在细胞培养72 h后中药干预正常组RMEC层TEER低于正常对照组,差异有统计学意义(P<0.05);中药干预低AGEs组、中药干预高AGEs组、中药干预缺氧组RMEC层TEER在细胞培养24 h、48 h和72 h后均高于同一时段相对应的非中药干预组,差异均有统计学意义(均为P<0.05)。低AGEs组、高AGEs组及缺氧组Occludin、ZO-1蛋白在RMEC层的阳性表达在细胞培养24 h、48 h和72 h后均弱于正常对照组。在细胞培养24 h、48 h和72 h后,中药干预正常组、中药干预低AGEs组、中药干预高AGEs组、中药干预缺氧组Occludin、ZO-1蛋白在RMEC层的阳性表达均强于同一时段相对应的非中药干预组。结论 AGEs及缺氧均可导致体外iBRB模型RMEC层TEER降低及Occludin、ZO-1蛋白表达减弱,补肾活血中药方血清能有效提高Occludin 和ZO-1蛋白的表达,抑制iBRB模型通透性增加,从而起到对体外iBRB模型的保护作用。
Abstract:
Objective To explore the protective effect of serum of Bushenhuoxue decoction on the inner blood-retinal barrier (iBRB) model in vitro.Methods The 7-day-old SD rats were used for material collection and primary cell culture. Retinal microvascular endothelial cells (RMEC) and retinal Müller glial cells (RMGC) of rats were isolated and subcultured. RMEC and RMGC were co-cultured in Transwell chamber to construct the in vitro iBRB model under normal conditions. The serum of Bushenhuoxue decoction was prepared and labeled as Chinese medicine serum and blank serum respectively. The experiment was divided into 8 groups. The successful co-culture model of iBRB in vitro was selected and divided into groups according to different culture conditions. The normal control group was cultured with DMEM containing 20% blank serum(A); while the Chinese medicine intervention normal group was cultured with DMEM containing 20% Chinese medicine serum(B); low advanced glycosylation end products (AGEs) group was "A" and final concentration of 50 mg·L-1 AGEs; the Chinese medicine intervention low AGEs group was "B" and final concentration of 50 mg·L-1 AGEs; high AGEs group was "A" and final concentration of 100 mg·L-1 AGEs; the Chinese medicine intervention high AGEs group was "B" and final concentration of 100 mg·L-1 AGEs; hypoxia group was "A" and final concentration of 1.0 mmol·L-1 sodium disulfite; the Chinese medicine intervention hypoxia group was "B" and final concentration of 1.0 mmol·L-1 sodium disulfite. The transendothelial electronic resistance (TEER) of RMEC cell layer in each group was detected by cell resistance meter, and the expression of Occludin and ZO-1 protein in RMEC cell layer was detected by immunofluorescence double labeling method.Results Under the condition of AGEs or hypoxia, the TEER of RMEC cell layer in low AGEs group, high AGEs group and hypoxia group was lower than that in normal control group at 24 hours,48 hours and 72 hours after cell culture, and the differences were statistically significant(all P<0.05). After 24 hours of cell culture, there was no significant difference in TEER between the Chinese medicine intervention normal group and the normal control group (P>0.05). After 48 hours of cell culture, the TEER of RMEC cell layer of the normal group treated with traditional Chinese medicine was higher than that of the normal control group, and the difference was statistically significant (P<0.05). After 72 hours of cell culture, the TEER of RMEC cell layer of the normal group treated with traditional Chinese medicine was lower than that of the normal control group, and the difference was statistically significant (P<0.05). The TEER of RMEC cell layer in Chinese medicine intervention low AGEs group, the Chinese medicine intervention high AGEs group and the Chinese medicine intervention hypoxia group were higher than those in the corresponding non-Chinese medicine intervention group at 24 hours,48 hours and 72 hours after cell culture, and the differences were statistically significant (all P<0.05). Conclusion Both AGEs and hypoxia can lead to the decrease of TEER and the expression levels of Occludin and ZO-1 protein in iBRB cell model in vitro. The serum of Bushenhuoxue decoction can effectively increase the expression levels of Occludin and ZO-1 protein and inhibit the increase of permeability, thus playing a protective role in iBRB model in vitro.

参考文献/References:

[1] LEE R,WONG T Y,SABANAYAGAM C.Epidemiology of diabetic retinopathy,diabetic macular edema and related vision loss[J].Eye Vis(Lond),2015,2:17.
[2] 秦学维.基于iBRB与AQP4研究补肾活血法对早期糖尿病视网膜水肿的干预作用及其机制[D].成都:成都中医药大学,2018.
QIN X W.Study on effect and mechanism of Bushenhuoxue therapy on early diabetic retinal edema based on iBRB and AQP4[D].Chengdu:Chengdu University of Traditional Chinese Medicine,2018.
[3] 原公强.高浓度葡萄糖对培养的人视网膜微血管内皮细胞屏障功能的影响[D].青岛:青岛大学,2006.
YUAN G Q.Effects of high concentration of glucose on barrier function of cultured human retinal microvascular endothelial cells[D].Qingdao:Qingdao University,2006.
[4] 郭斌,惠延年,王应利.体外内层血视网膜屏障模型中Müller胶质细胞对紧密连接的影响[J].国际眼科杂志,2006,6(2):311-316.
GUO B,HUI Y N,WANG Y L.Effect of Müller glial cells on tight junction in the model of inner blood-retinal barrier in vitro[J].Int Eye Sci,2006,6(2):311-316.
[5] 马殿伟,谢学军,张梅,万李.补肾活血剂对TGF-β2干预缺氧状态下视网膜Müller细胞谷氨酸代谢的影响[J].眼科新进展,2013,33(9):804-807.
MA D W,XIE X J,ZHANG M,WAN L.Effects of Bushenhuoxue decoction on Glu metabolism in TGF-β2 -intervened retinal Müller cells under hypoxic condition[J].Rec Adv Ophthalmol,2013,33(9):804-807.
[6] 马殿伟,谢学军,张梅,万李.补肾活血剂对高糖和(或)缺氧状态下共同培养视网膜神经节细胞和Müller细胞谷氨酸代谢的影响[J].眼科新进展,2015,35(5):419-423.
MA D W,XIE X J,ZHANG M,WAN L.Effects of Bushenhuoxue decoction on glutamate metabolism in retinal ganglion cells and Müller cells co-cultured in high glucose concentration or(and) hypoxic conditions[J].Rec Adv Ophthalmol,2015,35(5):419-423.
[7] 马殿伟,谢学军,张梅,万李.补肾活血剂对高糖和(或)缺氧状态下视网膜神经节细胞活力及谷氨酰胺合成酶活性的影响[J].眼科新进展,2014,34(6):510-514.
MA D W,XIE X J,ZHANG M,WAN L.Effects of Bushenhuoxue decoction on activities of glutamine synthetase and RGC cultured in high glucose concentration or(and) hypoxic conditions[J].Rec Adv Ophthalmol,2014,34(6):510-514.
[8] 秦伟,谢学军,李志英,宋明霞,曹新伟,马殿伟,等.补肾活血方对AGEs条件下体外纯化培养大鼠视网膜Müller细胞HIF-1α介导缺氧信号通路的影响[J].中国中医眼科杂志,2017,27(2):71-75.
QIN W,XIE X J,LI Z Y,SONG M X,CAO X W,MA D W,et al.Study on influence of Bushen Huoxue decoction on signal pathway mediated by HIF-1α of RMCs cultured in AGEs condition[J].Chin J TCM Ophthalmol,2017,27(2):71-75.
[9] 杨培增,陈家祺,葛坚,吴德正.眼科学基础与临床[M].北京:人民卫生出版社,2006:800-806.
YANG P Z,CHEN J Q,GE J,WU D Z.Basic and clinical ophthalmology[M].Beijing:People’s Health Publishing House,2006:800-806.
[10] 李莹莹,蔺晓慧.多因素介导下糖尿病性视网膜病变的发生机制研究[J].医学综述,2018,24(24):4918-4921,4927.
LI Y Y,LIN X H.Study on the mechanism of diabetic retinopathy mediated by multiple factors[J].Med Rev,2018,24(24):4918-4921,4927.
[11] INADA M,TAGUCHI M,HARIMOTO K,KARASAWA Y,TAKEUCHI M,ITO M.Protective effects of dexamethasone on hypoxia-induced retinal edema in a mouse model[J].Exp Eye Res,2019,178:82-90.
[12] 杨敏.右归丸药物血清对体外高糖缺氧条件下大鼠视网膜微血管内皮细胞VEGF/PI3K/Akt信号通路的影响[D].兰州:甘肃中医药大学,2018.
YANG M.Effect of Yougui Pill Drug Serum on VEGF/PI3K/Akt signal pathway of rat retinal microvascular endothelial cells under high glucose and hypoxia in vitro[D].Lanzhou:Gansu University of Traditional Chinese Medicine,2018.
[13] CAMPBELL M,HUMPHRISE P.The blood-retina barrier:tight junctions and barrier modulation[J].Adv Exp Med Biol,2012,763:70-84.
[14] ROACH T,ALCENDOR D J.Zika virus infection of cellular components of the blood-retinal barriers:implications for viral associated congenital ocular disease[J].J Neuroinflammat,2017,14(1):43.
[15] LIU L,LIU X.Roles of drug transporters in blood-retinal barrier[J].Adv Exp Med Biol,2019,1141:467-504.
[16] TOUT S,CHAN-LING T,HOLLANDER H,STONE J.The role of Müller cells in the formation of the blood-retinal barrier[J].Neuroscience,1993,55(1):291-301.
[17] FRESTA C G,CARUSO G,FIDILIO A,PLATANIA C B M,MUSSO N,CARACI F,et al.Dihydrotanshinone,a natural diterpenoid,preserves blood-retinal barrier integrity via P2X7 Receptor[J].Int J Mol Sci,2020,21(23):9305.
[18] POENAR D P,YANG G,WAN W K,FENG S.Low-cost method and biochip for measuring the trans-epithelial electrical resistance(TEER) of esophageal epithelium[J].Materials (Basel),2020,13(10):2354.
[19] FU D,YU J Y,CONNELLl A R,HOOKHAM M B,MCLEESE R H,LYONS T J.Effects of modified low-density lipoproteins and fenofibrate on an outer blood-retina barrier model:implications for diabetic retinopathy[J].J Ocul Pharmacol Ther,2020,36(10):754-764.
[20] 李璐.补阳还五汤及其拆方对血脑屏障通透性的体外研究[D].郑州:河南中医学院,2017.
LI L.In vitro study of Buyang Huanwu decoction and its disassembled prescriptions on the permeability of blood-brain barrier[D].Zhengzhou:Henan College of Traditional Chinese Medicine,2017.
[21] CONG X,KONG W.Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease[J].Cell Signal,2020,66:109485.
[22] HEINEMANN U,SCHUETZ A.Structural features of tight-junction proteins[J].Int J Mol Sci,2019,20(23):6020.
[23] WANG F,WANG D,SONG M,ZHOU Q,LIAO R,WANG Y.MiRNA-155-5p reduces corneal epithelial permeability by remodeling epithelial tight junctions during corneal wound healing[J].Curr Eye Res,2020,45(8):904-913.
[24] SUN R,GE L,CAO Y,WU W,WU Y,ZHE H,et al.MiR-429 regulates blood-spinal cord barrier permeability by targeting Krüppel-like factor 6[J].Biochem Biophys Res Commun,2020,525(3):740-746.
[25] 程岩.Robo4在调节血管内皮细胞通透性中的主要及机制研究[D].长春:吉林大学,2013.
CHENG Y.Study on the main and mechanism of Robo4 in regulating vascular endothelial cell permeability[D].Changchun:Jilin University,2013.

相似文献/References:

[1]李梦双,郭传龙,李君,等.多药耐药蛋白1和多药耐药相关蛋白5、7在糖尿病小鼠视网膜中表达的变化[J].眼科新进展,2017,37(1):010.[doi:10.13389/j.cnki.rao.2017.0003]
 LI Meng-Shuang,GUO Chuan-Long,LI Jun,et al.Differential expression of MDR1,MRP5 and MRP7 in diabetic mice retina[J].Recent Advances in Ophthalmology,2017,37(3):010.[doi:10.13389/j.cnki.rao.2017.0003]

备注/Memo

备注/Memo:
国家自然科学基金资助(编号:81473735)
更新日期/Last Update: 2021-03-05